c3(z, x, a) -> f1(b2(b2(f1(z), z), x))
b2(y, b2(z, a)) -> f1(b2(c3(f1(a), y, z), z))
f1(c3(c3(z, a, a), x, a)) -> z
↳ QTRS
↳ DependencyPairsProof
c3(z, x, a) -> f1(b2(b2(f1(z), z), x))
b2(y, b2(z, a)) -> f1(b2(c3(f1(a), y, z), z))
f1(c3(c3(z, a, a), x, a)) -> z
C3(z, x, a) -> F1(b2(b2(f1(z), z), x))
C3(z, x, a) -> B2(f1(z), z)
B2(y, b2(z, a)) -> B2(c3(f1(a), y, z), z)
B2(y, b2(z, a)) -> C3(f1(a), y, z)
C3(z, x, a) -> B2(b2(f1(z), z), x)
B2(y, b2(z, a)) -> F1(a)
B2(y, b2(z, a)) -> F1(b2(c3(f1(a), y, z), z))
C3(z, x, a) -> F1(z)
c3(z, x, a) -> f1(b2(b2(f1(z), z), x))
b2(y, b2(z, a)) -> f1(b2(c3(f1(a), y, z), z))
f1(c3(c3(z, a, a), x, a)) -> z
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
C3(z, x, a) -> F1(b2(b2(f1(z), z), x))
C3(z, x, a) -> B2(f1(z), z)
B2(y, b2(z, a)) -> B2(c3(f1(a), y, z), z)
B2(y, b2(z, a)) -> C3(f1(a), y, z)
C3(z, x, a) -> B2(b2(f1(z), z), x)
B2(y, b2(z, a)) -> F1(a)
B2(y, b2(z, a)) -> F1(b2(c3(f1(a), y, z), z))
C3(z, x, a) -> F1(z)
c3(z, x, a) -> f1(b2(b2(f1(z), z), x))
b2(y, b2(z, a)) -> f1(b2(c3(f1(a), y, z), z))
f1(c3(c3(z, a, a), x, a)) -> z
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
C3(z, x, a) -> B2(f1(z), z)
B2(y, b2(z, a)) -> B2(c3(f1(a), y, z), z)
B2(y, b2(z, a)) -> C3(f1(a), y, z)
C3(z, x, a) -> B2(b2(f1(z), z), x)
c3(z, x, a) -> f1(b2(b2(f1(z), z), x))
b2(y, b2(z, a)) -> f1(b2(c3(f1(a), y, z), z))
f1(c3(c3(z, a, a), x, a)) -> z
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
C3(z, x, a) -> B2(f1(z), z)
Used ordering: Polynomial Order [17,21] with Interpretation:
B2(y, b2(z, a)) -> B2(c3(f1(a), y, z), z)
B2(y, b2(z, a)) -> C3(f1(a), y, z)
C3(z, x, a) -> B2(b2(f1(z), z), x)
POL( B2(x1, x2) ) = max{0, 2x1 + x2 - 2}
POL( a ) = 3
POL( C3(x1, ..., x3) ) = max{0, 3x1 + x2 + x3 - 1}
POL( c3(x1, ..., x3) ) = 2x1 + x2 + 1
POL( f1(x1) ) = max{0, x1 - 3}
POL( b2(x1, x2) ) = x1 + 2
c3(z, x, a) -> f1(b2(b2(f1(z), z), x))
f1(c3(c3(z, a, a), x, a)) -> z
b2(y, b2(z, a)) -> f1(b2(c3(f1(a), y, z), z))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
B2(y, b2(z, a)) -> B2(c3(f1(a), y, z), z)
C3(z, x, a) -> B2(b2(f1(z), z), x)
B2(y, b2(z, a)) -> C3(f1(a), y, z)
c3(z, x, a) -> f1(b2(b2(f1(z), z), x))
b2(y, b2(z, a)) -> f1(b2(c3(f1(a), y, z), z))
f1(c3(c3(z, a, a), x, a)) -> z
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
C3(z, x, a) -> B2(b2(f1(z), z), x)
B2(y, b2(z, a)) -> C3(f1(a), y, z)
Used ordering: Polynomial Order [17,21] with Interpretation:
B2(y, b2(z, a)) -> B2(c3(f1(a), y, z), z)
POL( B2(x1, x2) ) = max{0, 2x1 + 2x2 - 3}
POL( a ) = 3
POL( C3(x1, ..., x3) ) = max{0, 2x1 + 2x2 + 2x3 - 2}
POL( c3(x1, ..., x3) ) = x1 + 3
POL( f1(x1) ) = max{0, x1 - 3}
POL( b2(x1, x2) ) = x1 + 3
c3(z, x, a) -> f1(b2(b2(f1(z), z), x))
f1(c3(c3(z, a, a), x, a)) -> z
b2(y, b2(z, a)) -> f1(b2(c3(f1(a), y, z), z))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
B2(y, b2(z, a)) -> B2(c3(f1(a), y, z), z)
c3(z, x, a) -> f1(b2(b2(f1(z), z), x))
b2(y, b2(z, a)) -> f1(b2(c3(f1(a), y, z), z))
f1(c3(c3(z, a, a), x, a)) -> z
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
B2(y, b2(z, a)) -> B2(c3(f1(a), y, z), z)
POL( B2(x1, x2) ) = max{0, 3x2 - 3}
POL( a ) = 3
POL( c3(x1, ..., x3) ) = max{0, 2x2 + x3 - 3}
POL( f1(x1) ) = x1 + 2
POL( b2(x1, x2) ) = 3x1 + 3x2 + 2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
c3(z, x, a) -> f1(b2(b2(f1(z), z), x))
b2(y, b2(z, a)) -> f1(b2(c3(f1(a), y, z), z))
f1(c3(c3(z, a, a), x, a)) -> z